123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992 |
- from mysql_db import MysqlDB
- from excel_util import ExcelUtil
- import time
- from entity import PeopleInfo
- import random
- class Mvp:
- """
- ce mvp 答题数据统计
- 城市特例 北京市,上海市, 重庆市,天津市
- """
- age_dict = {
- '00-04年生': '95后',
- '05-09年生': '05后',
- '50-59年生': '50后',
- '60-69年生': '60后',
- '70-74年生': '70后',
- '75-79年生': '75后',
- '80-84年生': '80后',
- '85-89年生': '85后',
- '90-94年生': '85后',
- '95-99年生': '95后'
- }
- age_list = ['85后', '95后']
- city_list = ['上海市', '上海周边']
- # 用户画像-消费结构 用户画像-生活方式
- # 需要更新的模块:用户画像-性别、用户画像-行业、用户画像-出行方式、
- # 用户画像-消费结构、用户画像-生活方式、用户画像-社交模式、用户画像-审美偏好
- # mvp_crowd_info_gender_rate
- tag_table = {
- '用户画像-审美偏好': ['mvp_crowd_info_aesthetic_preference', 'aesthetic_preference'],
- '用户画像-行为兴趣': ['mvp_crowd_info_behavior', 'behavioral_interest'],
- '用户画像-消费观念': ['mvp_crowd_info_consumer_concept', 'consumer_concept'],
- '用户画像-社交模式': ['mvp_crowd_info_social_mode', 'social_module'],
- '用户画像-行业': ['mvp_crowd_info_trade', 'trade'],
- '用户画像-出行方式': ['mvp_crowd_info_trip_mode', 'trip_mode'],
- '空间需求图谱-色相': ['mvp_innovate_space_hue_prefer', 'hue'],
- '空间需求图谱-精装关注点': ['mvp_innovate_space_hardcover_focus', 'hardcover_focus'],
- '空间需求图谱-色调': ['mvp_innovate_space_hue_prefer', 'hue'],
- '空间需求图谱-单品偏好': ['mvp_innovate_space_item_preference', 'item_preference'],
- '空间需求图谱-材质': ['mvp_innovate_space_material_prefer', 'material'],
- '空间需求图谱-空间特性偏好': ['mvp_innovate_space_space_prefer', 'space_preference'],
- '模块分数': ['mvp_crowd_info_module', 'module_name'],
- '用户画像-生活方式': ['mvp_crowd_info_life_style', 'life_style'],
- '用户画像-消费结构': ['mvp_crowd_info_consumer_structure', 'consumer_structure']
- }
- crowd_info_1 = {
- '1973': 'A',
- '1974': 'B',
- '1975': 'C',
- '1976': 'D',
- '1977': 'E',
- '1978': 'F',
- '1979': 'G',
- '1813': 'A',
- '1814': 'B',
- '1815': 'C',
- '1816': 'D',
- '1817': 'E',
- '1818': 'F',
- '1819': 'G'
- }
- base_insert_sql = '''
- INSERT INTO {} (
- crowd_info_id,
- {},
- standard_value,
- STATUS,
- creator,
- created
- )
- VALUES
- (%s, %s, %s, 1, 'binren', now())
- '''
- def get_table_name(self, name):
- """
- 获取表名
- :param name:
- :return:
- """
- params = self.tag_table.get(name)
- if params:
- return self.tag_table.get(name)[0]
- def get_insert_sql(self, tag_type_name):
- """
- 根据标签分类名称获取相应表的插入sql
- :param tag_type_name:
- :return:
- """
- params = self.tag_table.get(tag_type_name)
- if params:
- return self.base_insert_sql.format(params[0], params[1])
- crowd = ['A', 'B', 'C', 'D', 'E', 'F']
- # 获取答题记录中城市列表
- sql_1 = 'select city from f_t_daren_score_2 group by city'
- # 获取父选项和父题id
- sql_2 = 'select a.id, a.content, b.id, b.name from bq_option a left join bq_question b on a.question_id = b.id ' \
- 'where a.serial_number = %s and b.serial_number = %s and a.status = b.status = 1 '
- # 获取答题人的年龄段集合
- sql_4 = 'select nld from f_t_daren_score_2 group by nld'
- # 根据城市,年龄段,人群分类统计答题记录数
- sql_5 = 'select testcase_id, COUNT(DISTINCT uuid) from f_t_daren_score_2 where uuid in %s group by testcase_id '
- # 根据父选项获取子选项id列表
- sql_6 = '''
- SELECT
- c.id,
- c.sub_question_id,
- c.content
- FROM
- bq_sub_option c
- WHERE
- c.father_id IN (
- SELECT
- a.id
- FROM
- bq_option a
- LEFT JOIN bq_question b ON a.question_id = b.id
- WHERE
- a.serial_number = % s
- AND b.serial_number = % s
- AND a. STATUS = 1
- AND b. STATUS = 1
- )
- AND c. STATUS = 1
- '''
- # 根据子题id获取包含子题id的测试
- sql_7 = 'select id from bq_testcase where status = 1 and FIND_IN_SET(%s, question_ids)'
- # 根据子选项id统计答题数
- sql_8 = '''
- SELECT
- count(DISTINCT a.uuid)
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- AND a.testcase_id = b.testcase_id
- WHERE
- b.sub_option_id IN % s
- AND a.uuid IN % s
- '''
- # 获取一个uuid下答题的子选项id列表
- sql_10 = 'select DISTINCT uuid, GROUP_CONCAT(DISTINCT b.sub_option_id) from f_t_daren_score_2 a left join ' \
- 'd_shangju_tiku_02 b on a.sub_question_id = b.sub_question_id and (a.score = b.score or a.score = ' \
- 'b.sub_option_id) where a.status = ' \
- 'b.status = 1 group by uuid '
- # 向表mvp_crowd_info插入数据
- sql_11 = 'insert into mvp_crowd_info(age_area, city_name, crowd_type, status) values(%s, %s, %s, 1)'
- # 向表mvp_crowd_info_behavior中插入数据
- sql_12 = 'insert into mvp_crowd_info_behavior(crowd_info_id, behavioral_interest, standard_value, status) values(' \
- '%s, %s, ' \
- '%s, 1) '
- # 向表mvp_crowd_info_module中插入数据
- sql_13 = 'insert into mvp_crowd_info_module(crowd_info_id, module_name, standard_value, status) values (%s, %s, ' \
- '%s, 1) '
- sql_14 = 'select a.id, a.age_area, a.city_name, a.crowd_type from mvp_crowd_info a where a.status = 1'
- # 获取答题城市信息from city
- sql_15 = '''
- SELECT
- a.uuid,
- IFNULL(GROUP_CONCAT(DISTINCT a.city, a.province), 00) AS city,
- IFNULL(GROUP_CONCAT(DISTINCT a.nld), 00) AS nld,
- IFNULL(GROUP_CONCAT(DISTINCT a.sex), 00) AS sex,
- IFNULL(GROUP_CONCAT(DISTINCT b.sub_option_id), 00) as sub_option_ids,
- IFNULL(GROUP_CONCAT(DISTINCT a.testcase_id), 00) as testcase_ids
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.testcase_id = b.testcase_id
- WHERE
- a.testcase_id = b.testcase_id
- AND a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- GROUP BY
- a.uuid
- '''
- # 根据用户uuid获取城市信息
- sql_16 = '''
- SELECT
- a.uuid,
- b.sub_option_content
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.testcase_id = b.testcase_id
- WHERE
- a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- AND a.uuid = %s
- AND b.father_id in (249, 254)
- AND a. STATUS = b. STATUS = 1
- '''
- # 答题人人群分类信息
- sql_17 = '''
- SELECT
- a.uuid,
- b.sub_option_id
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.testcase_id = b.testcase_id
- WHERE
- a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- AND a.uuid = %s
- AND b.father_id = 236
- AND a.STATUS = b.STATUS = 1
- '''
- sql_18 = '''
- DELETE
- FROM
- mvp_crowd_info_behavior
- WHERE
- FIND_IN_SET(crowd_info_id, (
- SELECT
- GROUP_CONCAT(id)
- FROM
- mvp_crowd_info
- WHERE
- city_name = '上海市'
- AND age_area = '85后'
- AND STATUS = 1
- ))
- '''
- # 根据名称获取图标
- sql_19 = '''
- SELECT
- id,
- NAME
- FROM
- mvp_icon
- WHERE status = 1
- '''
- # 行为更新图标
- sql_20 = '''
- UPDATE mvp_crowd_info_behavior
- SET icon_id = % s
- WHERE
- behavioral_interest = % s
- '''
- # 模块图标更新
- sql_21 = '''
- '''
- # 更新性别占比数据
- sql_22 = '''
- INSERT INTO mvp_crowd_info_gender_rate (
- crowd_info_id,
- gender,
- standard_value,
- status,
- creator,
- created
- )
- VALUES
- (%s, %s, %s, 1, 'binren', now())
- '''
- sql_23 = '''
- DELETE
- FROM
- mvp_crowd_info_module
- WHERE
- FIND_IN_SET(crowd_info_id, (
- SELECT
- GROUP_CONCAT(id)
- FROM
- mvp_crowd_info
- WHERE
- city_name = '上海市'
- AND age_area = '85后'
- AND STATUS = 1
- ))
- '''
- """
- 数据debug SQL
- 1:
- SELECT
- c.id,
- c.sub_question_id,
- c.content
- FROM
- bq_sub_option c
- WHERE
- c.father_id IN (
- SELECT
- a.id
- FROM
- bq_option a
- LEFT JOIN bq_question b ON a.question_id = b.id
- WHERE
- a.serial_number ='FA001'
- AND b.serial_number = 'F00245'
- AND a. STATUS = 1
- AND b. STATUS = 1
- )
- AND c.STATUS = 1
- 2:
- select id from bq_testcase where status = 1 and FIND_IN_SET(%s, question_ids)
- 3:
- SELECT
- count(1)
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- AND a.testcase_id = b.testcase_id
- WHERE
- b.sub_option_id IN (1964,1965,1966,1967,1968,1969,1970,1971,1972)
- """
- def __init__(self, path=None):
- self.shangju_db = MysqlDB('shangju')
- self.marketing_db = MysqlDB('bi_report')
- self.linshi_db = MysqlDB('linshi', db_type=1)
- # self.shangju_db.truncate('mvp_standard_score')
- self.tag_data = ExcelUtil(file_name=path).init_mvp_data()
- self.crowd_info = ExcelUtil(file_name=path, sheet_name='选项-人群分类对应表').init_crowd_info()
- self.citys = self.init_city()
- self.age = self.init_age()
- self.people_sub_option_ids = self.marketing_db.select(self.sql_10)
- self.crowd_contain_sub_option_ids = self.get_crowd_contain_sub_option_ids()
- self.module_scores = ExcelUtil(file_name='module.xlsx', sheet_name='行为-模块映射表').module_behavior_info()
- # self.scores_tag = ExcelUtil(file_name='行为与模块分值汇总.xlsx', sheet_name='行为').init_scores()
- # self.score_module = ExcelUtil(file_name='行为与模块分值汇总.xlsx', sheet_name='模块').init_scores()
- self.people_info_1 = self.people_info()
- self.out_way_datas = ExcelUtil(file_name=path).init_out_way()
- def close(self):
- self.shangju_db.close()
- self.marketing_db.close()
- self.linshi_db.close()
- def init_city(self):
- """
- 获取答题数据中的城市。
- :return:
- """
- citys = ['上海市', '上海周边']
- # citys_info = self.marketing_db.select(self.sql_1)
- # citys.extend([x[0] for x in citys_info if x[0] is not None])
- return citys
- def query_behavioral_info(self, city=None, age=None, crowd=None):
- """
- 查询行为兴趣信息
- :return:
- """
- # datas = []
- # for key in self.tag_data.keys():
- # values = self.tag_data[key]
- # for value in values:
- # question = value[0].split('-')[0]
- # option = value[0].split('-')[1]
- # corr = value[1]
- # data = self.shangju_db.select(self.sql_2, [option, question])
- # if len(data) > 0:
- # print([question, option, data[0][3], data[0][1], key, corr])
- # datas.append([question, option, data[0][3], data[0][1], key, corr])
- # self.shangju_db.truncate('mvp_question_classification')
- # self.shangju_db.add_some(self.sql_3, datas)
- scores_behavioral = self.city_age_crowd(city, age, crowd, 1)
- # scores_module = self.module_score(crowd, city, age, scores_behavioral['score'])
- # result = {'行为兴趣分值': scores_behavioral['score'], '模块分值': scores_module}
- print('update finished!!!')
- return scores_behavioral
- def people_info(self):
- """
- 答题人个人信息获取
- :return:
- """
- people_info_city = self.marketing_db.select(self.sql_15)
- people_infos = []
- for people in people_info_city:
- uuid = people[0]
- city = people[1]
- nld = people[2]
- sex = people[3]
- if sex and len(str(sex).split(',')) > 0:
- sex = str(sex).split(',')[0]
- else:
- sex = '3'
- sub_option_ids_1 = people[4]
- testcaseid = people[5]
- if str(city).find('市') != -1:
- city = str(city).split('市')[0] + '市'
- if str(nld).find(',') != -1:
- nld_1 = list(str(nld).split(','))
- if len(nld_1) > 0:
- nld = nld_1[0]
- else:
- pass
- crowd = []
- if testcaseid:
- testcastids = list(map(int, str(testcaseid).split(',')))
- if len(testcastids) > 0:
- gt_75 = [x for x in testcastids if x > 74]
- if len(gt_75) > 0:
- # 从答题结果中获取城市信息
- citys = self.marketing_db.select(self.sql_16, [uuid])
- if len(citys) > 0:
- if citys[0][1] in ('上海市', '一线', '上海', '北京', '广州', '深圳', '北京市', '广州市', '深圳市'):
- city = '上海市'
- # elif citys[0][1] in ('二线', '杭州', '宁波', '无锡', '苏州', '杭州市', '宁波市', '无锡市', '苏州市'):
- # city = '上海周边'
- else:
- city = '上海周边'
- # city = '上海市' if (citys[0][1] == '一线' or citys[0][1] == '上海') else '上海周边'
- # 根据用户子选项id集合,获取用户的人群分类
- if len(gt_75) > 0:
- # 特定的测试人群分类从答题结果中获取
- sub_option_ids = self.marketing_db.select(self.sql_17, [uuid])
- for option in sub_option_ids:
- crowd_type = self.crowd_info_1.get(option[1])
- if crowd_type:
- crowd.append(crowd_type)
- else:
- crowd.append('A')
- else:
- if sub_option_ids_1 is not None:
- crowd.extend(self.get_people_uuid_by_sub_option_ids(sub_option_ids_1))
- if city is None:
- city = '上海市'
- people_info = PeopleInfo(uuid, city, nld, sex, crowd)
- people_infos.append(people_info)
- # people_infos.append([uuid, city, nld, sex, crowd])
- return people_infos
- def people_filter(self, city, nld, crowd):
- uuids = []
- for people in self.people_info_1:
- if people.city == city and people.age == nld and crowd in people.crowd:
- uuids.append(people.uuid)
- return uuids
- def get_people_uuid_by_sub_option_ids(self, sub_ids):
- types = []
- for key in self.crowd_contain_sub_option_ids.keys():
- type_sub_option_ids = self.crowd_contain_sub_option_ids[key]
- sub_option_ids = list(map(int, str(sub_ids).split(',')))
- # list(set(a).intersection(set(b)))
- if len(list(set(sub_option_ids).intersection(set(type_sub_option_ids)))) > 0 and key not in types:
- types.append(key)
- return types
- def update_data(self):
- """
- 定时更新分值
- 使用真实数据模块名称:空间需求图谱-材质,空间需求图谱-色调,空间需求图谱-色相
- 用户画像-行业,用户画像-出行方式,用户画像-消费结构,用户画像-生活方式,用户画像-社交模式, 模块分数
- :return:
- """
- message = {}
- try:
- self.insert_table = []
- self.ids = self.query_data()
- for city in self.city_list:
- for age in self.age_list:
- for crowd in self.crowd:
- result = self.city_age_crowd(city, age, crowd)
- self.insert_score_to_db(result)
- self.linshi_db.delete(self.sql_18)
- message['实际分值'] = '更新完成'
- # insert_data = self.shanghai_85_module_score_insert()
- self.linshi_db.delete(self.sql_23)
- # self.insert_score_to_db(insert_data)
- message['模块模拟分值'] = '更新完成'
- self.update_gender_rate()
- message['性别信息'] = '更新完成'
- self.update_icon()
- message['行为图标'] = '更新完成'
- return message
- except Exception as e:
- message['error'] = str(e)
- return message
- def update_gender_rate(self, ids=None):
- """
- 更新性别占比
- :return:
- """
- if ids:
- self.ids = self.query_data()
- insert_data = []
- for city in self.city_list:
- for age in self.age_list:
- for crowd in self.crowd:
- boy = 0
- girl = 0
- for people in self.people_info_1:
- if people.sex is not None and city == people.city and crowd in people.crowd and age == people.age:
- if people.sex == '1':
- boy += 1
- if people.sex == '2':
- girl += 1
- crowd_info_id = self.get_crowd_info_id([city, age, crowd])
- if crowd_info_id and (boy + girl) > 0:
- boy_rate = boy / (boy + girl)
- girl_rate = girl / (boy + girl)
- if age == '95后' and city == '上海市':
- boy_rate = random.uniform(0.4, 0.6)
- girl_rate = 1 - boy_rate
- insert_data.append([crowd_info_id, 1, boy_rate])
- insert_data.append([crowd_info_id, 0, girl_rate])
- if len(insert_data) > 0:
- self.linshi_db.truncate('mvp_crowd_info_gender_rate')
- self.linshi_db.add_some(self.sql_22, insert_data)
- print('性别占比更新完成...')
- else:
- print('无数据更新...')
- def get_crowd_info_id(self, people_info):
- for id_data in self.ids:
- city_1 = id_data[2]
- age_1 = id_data[1]
- crowd_1 = id_data[3]
- id_1 = id_data[0]
- if people_info[0] == city_1 and people_info[1] == age_1 and people_info[2] == crowd_1:
- return id_1
- def update_image(self):
- """
- 更新标签关联的图片信息
- :return:
- """
- pass
- def update_icon(self):
- """
- 标签关联图标
- :return:
- """
- icons = self.linshi_db.select(self.sql_19)
- for ic in icons:
- id = ic[0]
- name = ic[1]
- self.linshi_db.update(self.sql_20, [id, name])
- print('行为标签关联图标完成...')
- def insert_score_to_db(self, scores):
- """
- 行为、模块分数写入数据库
- :return:
- """
- behavior_score = scores['behavior_score']
- module_score = scores['module_score']
- module_insert_sql = self.get_insert_sql('模块分数')
- if module_insert_sql:
- module_insert_data = []
- for module in module_score:
- data = self.need_inert(module)
- if data:
- module_insert_data.append(data)
- # 先清空之前的数据
- if len(module_insert_data) > 0:
- table_name = self.get_table_name('模块分数')
- if table_name is not None and table_name not in self.insert_table:
- # self.linshi_db.delete(self.sql_23)
- self.linshi_db.truncate(table_name)
- self.linshi_db.add_some(module_insert_sql, module_insert_data)
- self.insert_table.append(table_name)
- print('模块分数更新完成...')
- for b_score in behavior_score:
- for key in b_score.keys():
- insert_sql = self.get_insert_sql(key)
- if insert_sql:
- insert_data = []
- score = b_score[key]
- for data in score:
- insert_data_element = self.need_inert(data)
- # insert_data_element = self.need_inert(data, key)
- if insert_data_element:
- insert_data.append(insert_data_element)
- if len(insert_data) > 0:
- table_name = self.get_table_name(key)
- if table_name and table_name not in self.insert_table:
- # if table_name == 'mvp_crowd_info_behavior':
- # self.linshi_db.delete(self.sql_18)
- # else:
- self.linshi_db.truncate(table_name)
- self.linshi_db.add_some(insert_sql, insert_data)
- self.insert_table.append(table_name)
- else:
- print('未找到对应的表,数据无法插入...')
- print('行为分数更新完成...')
- def need_inert(self, data, table=None):
- city = data[0]
- age = data[1]
- crowd = data[2]
- tag_name = data[3]
- tag_score = data[4]
- # if key == '用户画像-行为兴趣' and city == '上海市' and age == '85后':
- # pass
- # else:
- for id_data in self.ids:
- city_1 = id_data[2]
- age_1 = id_data[1]
- crowd_1 = id_data[3]
- id_1 = id_data[0]
- if city == city_1 and age == age_1 and crowd == crowd_1:
- if table:
- people_tag_score = self.think_adjustment_data(table, city, age, tag_name, tag_score, crowd)
- tag_score = people_tag_score if people_tag_score is not None else tag_score
- return [id_1, tag_name, tag_score]
- def think_adjustment_data(self, table, city, age, tag_name, score, crowd):
- """
- 人为调整数据
- :param table:
- :param city:
- :param age:
- :param score:
- :return:
- """
- if age == '85后' and city in ('上海市', '上海周边'):
- if table in ('用户画像-行业', '用户画像-生活方式', '用户画像-消费结构', '用户画像-社交模式'):
- score = score * random.uniform(0.8, 1.0)
- if table in ('用户画像-审美偏好', '用户画像-消费观念'):
- if table == '用户画像-消费观念':
- if tag_name in ('高端奢侈', '国潮国货', '小众品牌',
- '亲民平价', '私人定制', '抽象艺术', '街头艺术',
- '非遗艺术', '古典艺术', '颜控', '养成类',
- '实力派','黑科技', '实用科技'):
- score = random.uniform(0, 0.5)
- else:
- pass
- else:
- score = random.uniform(0, 0.5)
- if age == '95后' and city == '上海市':
- if table in ('用户画像-社交模式'):
- score = random.uniform(0.8, 1.0) * score
- if table in ('用户画像-行业', '用户画像-审美偏好', '用户画像-消费观念', '用户画像-生活方式', '用户画像-消费结构'):
- if table in ('用户画像-消费观念'):
- if tag_name in ('高端奢侈', '国潮国货', '小众品牌',
- '亲民平价', '私人定制', '抽象艺术', '街头艺术',
- '非遗艺术', '古典艺术', '颜控', '养成类',
- '实力派', '黑科技', '实用科技'):
- score = random.uniform(0, 0.5)
- else:
- pass
- else:
- score = random.uniform(0, 0.5)
- if table == '用户画像-出行方式':
- # 使用模拟数据
- people_score = self.out_way_datas.get(age + city + crowd + tag_name)
- if people_score:
- score = people_score
- if age == '95后' and city == '上海周边':
- if table in ('用户画像-出行方式', '用户画像-行业', '用户画像-审美偏好', '用户画像-消费观念', '用户画像-消费结构', '用户画像-社交模式'):
- score = score * random.uniform(0.8, 1.0)
- if table in ('用户画像-生活方式'):
- score = random.uniform(0, 0.5)
- return score
- def module_score(self, crowd, city, age, scores):
- """
- 模块分数计算
- 城市 年龄 人群分类 模块名称 分数
- :return:
- """
- # import json
- # print(json.dumps(scores, ensure_ascii=False))
- modules = self.module_scores
- result = []
- for key in modules.keys():
- values = modules[key]
- module_name = key
- score = 0
- for value in values:
- behavioral_name = value[0]
- weight = float(value[1])
- standard_score = [x[4] for x in scores if x[3] == behavioral_name]
- if len(standard_score) > 0:
- score += standard_score[0] * weight
- score = 1 if score > 1 else score
- result.append([city, age, crowd, module_name, score])
- return result
- # def insert_data(self, scores_behavioral, scores_module):
- def insert(self):
- """
- 计算数据写入数据库中,供接口查看
- :return:
- """
- infos = []
- for city in self.city_list:
- for age in self.age_list:
- for c_type in self.crowd:
- age_area = self.age_dict.get(age)
- if age_area:
- infos.append([age_area, city, c_type])
- self.shangju_db.add_some(self.sql_11, infos)
- def query_data(self):
- ids = self.linshi_db.select(self.sql_14)
- return ids
- def shanghai_85_module_score_insert(self):
- """
- 上海市,85后模块分数计算
- :return:
- """
- result = []
- for crowd in self.crowd:
- modules = self.module_scores[crowd]
- for key in modules.keys():
- values = modules[key]
- module_name = key
- score = 0
- for value in values:
- # behavioral_name = value[0]
- weight = float(value[2])
- # standard_score = [x[4] for x in scores if x[2] == behavioral_name]
- standard_score = float(value[1])
- if standard_score is not None:
- score += standard_score*random.uniform(0.8, 1.2) * weight
- result.append(['上海市', '85后', crowd, module_name, score])
- # return result
- return {'behavior_score': [], 'module_score': result}
- def init_age(self):
- """
- 获取答题数据中的年龄
- """
- return ['95后', '85后']
- # age_info = self.marketing_db.select(self.sql_4)
- # # print([x[0] for x in age_info])
- # return [x[0] for x in age_info if x[0] is not None]
- def city_age_crowd(self, city=None, age=None, crowd=None, is_data=None):
- data_start = []
- result = []
- module_scores = []
- if city is not None and age is not None and crowd is not None:
- print('获取指定城市,年龄段,人群类型的数据...')
- # people_uuids = self.get_people_uuid_by_type(crowd)
- people_uuids = self.people_filter(city, age, crowd)
- behavior_data = None
- if len(people_uuids) > 0:
- print('{}-{}-{}'.format(city, age, crowd))
- datas = self.behavior_tag_init(city, age, people_uuids)
- data_start.append(datas)
- all_data, behavior_data_1 = self.calculation_standard_score(datas, city, age, crowd)
- result.append(all_data)
- behavior_data = behavior_data_1
- if behavior_data:
- module_scores.extend(self.module_score(crowd, city, age, behavior_data))
- # data_list = []
- # for e in data_start:
- # for key in e.keys():
- # values = e[key]
- # for sub_e in values:
- # ele = [key]
- # ele.extend(sub_e)
- # data_list.append(ele)
- # pass
- if is_data == 1:
- return {'behavior_score': result, 'module_score': module_scores, 'fzfm': data_start}
- return {'behavior_score': result, 'module_score': module_scores}
- # return {'score': result, 'data': data_list}
- def scores(self):
- behavior_score = []
- module_scores = []
- for city in self.city_list:
- for age in self.age_list:
- for crowd in self.crowd:
- data = self.city_age_crowd(city, age, crowd, 1)
- behavior_score.extend(data['behavior_score'])
- module_scores.extend(data['module_score'])
- return {'behavior_score': behavior_score, 'module_score': module_scores}
- def behavior_tag_init(self, city, age, people_uuids):
- result = {}
- self.group_type_count = self.marketing_db.select(self.sql_5, [people_uuids])
- # 表名
- for key in self.tag_data.keys():
- values = self.tag_data[key]
- result_sub = {}
- for key_tag_name in values.keys():
- questions = values[key_tag_name]
- elements = []
- for value in questions:
- question = value[0].split('-')[0]
- option = value[0].split('-')[1]
- corr = value[1]
- fz, fm = self.molecular_value(question, option, city, age, people_uuids)
- if fm == 0:
- c = 0
- else:
- c = fz / fm
- elements.append([question, option, corr, fz, fm, c])
- result_sub[key_tag_name] = elements
- result[key] = self.indicator_calculation_d_e(result_sub)
- return result
- def molecular_value(self, queston, option, city, age, people_uuids):
- # 获取当前父选项包含的子选项id和子题id列表
- result = self.shangju_db.select(self.sql_6, [option, queston])
- sub_option_ids = []
- group_types = []
- for rt in result:
- sub_option_id, sub_question_id, content = rt[0], rt[1], rt[2]
- grouptypes = self.shangju_db.select(self.sql_7, [sub_question_id])
- for g_t in grouptypes:
- if str(g_t[0]) not in group_types:
- group_types.append(str(g_t[0]))
- sub_option_ids.append(sub_option_id)
- # 计算子选项在答题记录中的点击数
- sub_options_count = 0
- if len(sub_option_ids) > 0:
- result_1 = self.marketing_db.select(self.sql_8, [sub_option_ids, people_uuids])
- sub_options_count = result_1[0][0]
- # 计算父选项包含的子选项对应的子题所在的测试gt包含的点击数。
- denominator_value = 0
- for info in self.group_type_count:
- if str(info[0]) in group_types:
- denominator_value += info[1]
- return sub_options_count, denominator_value
- def indicator_calculation_d_e(self, data):
- result = {}
- for key in data.keys():
- values = data[key]
- c_list = []
- for x in values:
- _x = x[5]
- if _x is not None and x != 0:
- c_list.append(_x)
- fm_list = [x[4] for x in values]
- sum_c = sum(fm_list)
- if len(c_list) == 0:
- min_c = 0
- else:
- min_c = min(c_list)
- elements = []
- for value in values:
- _value = []
- c = value[5]
- if sum_c == 0:
- d = 0
- else:
- d = c / sum_c
- e = c - min_c
- _value.extend(value)
- _value.append(d)
- _value.append(e)
- elements.append(_value)
- result[key] = elements
- return result
- def calculation_standard_score(self, datas, city, age, crowd_type):
- scores = {}
- for key_tag_type in datas.keys():
- print(key_tag_type)
- tag_type_data = datas[key_tag_type]
- scores_sub = []
- for key_tag in tag_type_data.keys():
- key_tag_data = tag_type_data[key_tag]
- print(key_tag)
- print(' 父题序号 父选项序号 相关系系数 分子值 分母值 百分比 人数权重 偏离值')
- values = [x[5] for x in key_tag_data]
- min_c = min(values)
- f = min_c
- for value in key_tag_data:
- print(' {}'.format(value))
- if value[2] is not None and value[7] is not None:
- f += float(value[2] * value[7])
- print(' 标准分:{}'.format(f))
- if key_tag_type == '用户画像-行为兴趣':
- f = f * random.uniform(0.8, 1.2)
- # if f >= 1:
- # f = f*random.uniform(0.05, 0.35)
- # if f == 0:
- # f = random.uniform(0.08, 0.33)
- scores_sub.append([city, age, crowd_type, key_tag, f])
- scores[key_tag_type] = scores_sub
- # self.shangju_db.add_some(self.sql_9, scores)
- return scores, scores['用户画像-行为兴趣']
- def people_data(self):
- result = self.people_info()
- a = 0
- b = 0
- c = 0
- d = 0
- e = 0
- f = 0
- for rt in result:
- crowds = rt.crowd
- if 'A' in crowds:
- a += 1
- if 'B' in crowds:
- b += 1
- if 'C' in crowds:
- c += 1
- if 'D' in crowds:
- d += 1
- if 'E' in crowds:
- e += 1
- if 'F' in crowds:
- f += 1
- return {'A': a, 'B': b, 'C': b, 'D': d, 'E': e, 'F': f}
- def get_crowd_people(self):
- result = {}
- for type in self.crowd:
- uuids = self.get_people_uuid_by_type(type)
- result[type] = len(uuids)
- return result
- def get_people_uuid_by_type(self, type):
- uuids = []
- type_sub_option_ids = self.crowd_contain_sub_option_ids[type]
- for people in self.people_sub_option_ids:
- uuid = people[0]
- sub_option_ids = list(map(int, str(people[1]).split(',')))
- # list(set(a).intersection(set(b)))
- if len(list(set(sub_option_ids).intersection(set(type_sub_option_ids)))) > 0 and uuid not in uuids:
- uuids.append(uuid)
- return uuids
- def get_crowd_contain_sub_option_ids(self):
- """
- 获取ABCDEF人群包含的子选项id
- :return:
- """
- infos = {}
- for key in self.crowd_info.keys():
- values = self.crowd_info[key]
- sub_option_ids = []
- for value in values:
- if value is not None:
- vals = str(value).split('-')
- option, question = vals[1], vals[0]
- query_result = self.shangju_db.select(self.sql_6, [option, question])
- for qr in query_result:
- sub_option_id, sub_question_id, content = qr[0], qr[1], qr[2]
- sub_option_ids.append(int(sub_option_id))
- infos[key] = sub_option_ids
- return infos
- if __name__ == '__main__':
- pass
|