123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- from db.mysql_db import MysqlDB
- from utils.excel_util import ExcelUtil
- class Mvp:
- """
- ce mvp 答题数据统计
- 城市特例 北京市,上海市, 重庆市,天津市
- """
- age_dict = {
- '00-04年生': '00后',
- '05-09年生': '05后',
- '50-59年生': '50后',
- '60-69年生': '60后',
- '70-74年生': '70后',
- '75-79年生': '75后',
- '80-84年生': '80后',
- '85-89年生': '85后',
- '90-94年生': '90后',
- '95-99年生': '95后'
- }
- crowd = ['A', 'B', 'C', 'D', 'E', 'F']
- # 获取答题记录中城市列表
- sql_1 = 'select city from f_t_daren_score_2 group by city'
- # 获取父选项和父题id
- sql_2 = 'select a.id, a.content, b.id, b.name from bq_option a left join bq_question b on a.question_id = b.id ' \
- 'where a.serial_number = %s and b.serial_number = %s and a.status = b.status = 1 '
- # 数据插入表mvp_question_classification
- sql_3 = 'insert into mvp_question_classification(question_serial_number, question_content, ' \
- 'option_serial_number, option_content, tag, corr) values(%s, %s, %s, %s, %s, %s) '
- # 获取答题人的年龄段集合
- sql_4 = 'select nld from f_t_daren_score_2 group by nld'
- # 根据城市,年龄段,人群分类统计答题记录数
- sql_5 = 'select group_type, COUNT(uuid) from f_t_daren_score_2 where (city = %s or province = %s) and nld ' \
- '= %s and uuid in %s group by group_type '
- # 根据父选项获取子选项id列表
- sql_6 = 'SELECT c.id, c.sub_question_id, c.content FROM bq_sub_option c WHERE c.father_id in (SELECT a.id FROM ' \
- 'bq_option a ' \
- 'LEFT JOIN bq_question b ON a.question_id = b.id WHERE a.serial_number = %s AND b.serial_number = %s ' \
- 'and a.status = 1 and b.status = 1) and c.status = 1 '
- # 根据子题id获取包含子题id的测试
- sql_7 = 'select group_type from bq_testcase where status = 1 and FIND_IN_SET(%s, question_ids)'
- # 根据子选项id统计答题数
- sql_8 = 'SELECT count(uuid) FROM f_t_daren_score_2 a LEFT JOIN d_shangju_tiku_02 b ON a.sub_question_id = ' \
- 'b.sub_question_id AND a.score = b.score WHERE a.testcase_id = b.testcase_id and b.sub_option_id in %s' \
- 'and (a.city = %s or a.province = %s) and a.nld = %s and a.uuid in %s'
- # 计算值写入表汇总
- sql_9 = 'insert into mvp_standard_score(city, age, tag, crowd_type, score) VALUES(%s, %s, %s, %s, %s)'
- # 获取一个uuid下答题的子选项id列表
- sql_10 = 'select DISTINCT uuid, GROUP_CONCAT(DISTINCT b.sub_option_id) from f_t_daren_score_2 a left join ' \
- 'd_shangju_tiku_02 b on a.sub_question_id = b.sub_question_id and a.score = b.score where a.status = ' \
- 'b.status = 1 group by uuid '
- def __init__(self, path=None):
- self.shangju_db = MysqlDB('shangju')
- self.marketing_db = MysqlDB('marketing_db')
- self.shangju_db.truncate('mvp_standard_score')
- self.tag_data = ExcelUtil(path=path).init_mvp_data()
- self.crowd_info = ExcelUtil(path=path, sheet_name='选项-人群分类对应表').init_crowd_info()
- self.citys = self.init_city()
- self.age = self.init_age()
- self.people_sub_option_ids = self.marketing_db.select(self.sql_10)
- self.crowd_contain_sub_option_ids = self.get_crowd_contain_sub_option_ids()
- def init_city(self):
- """
- 获取答题数据中的城市。
- :return:
- """
- citys = ['北京市', '上海市', '重庆市', '天津市']
- citys_info = self.marketing_db.select(self.sql_1)
- citys.extend([x[0] for x in citys_info if x[0] is not None])
- return citys
- def write_tag(self, city=None, age=None, crowd=None):
- """
- 将excel中的配置信息写入到数据库表中
- :return:
- """
- # datas = []
- # for key in self.tag_data.keys():
- # values = self.tag_data[key]
- # for value in values:
- # question = value[0].split('-')[0]
- # option = value[0].split('-')[1]
- # corr = value[1]
- # data = self.shangju_db.select(self.sql_2, [option, question])
- # if len(data) > 0:
- # print([question, option, data[0][3], data[0][1], key, corr])
- # datas.append([question, option, data[0][3], data[0][1], key, corr])
- # self.shangju_db.truncate('mvp_question_classification')
- # self.shangju_db.add_some(self.sql_3, datas)
- result = self.city_age_crowd(city, age, crowd)
- print('update finished!!!')
- return result
- def init_age(self):
- """
- 获取答题数据中的年龄
- """
- age_info = self.marketing_db.select(self.sql_4)
- # print([x[0] for x in age_info])
- return [x[0] for x in age_info if x[0] is not None]
- def city_age_crowd(self, city=None, age=None, crowd=None):
- result = []
- if city is not None and age is not None and crowd is not None:
- print('获取指定城市,年龄段,人群类型的数据...')
- people_uuids = self.get_people_uuid_by_type(crowd)
- if len(people_uuids) > 0:
- print('{}-{}-{}'.format(city, age, crowd))
- datas = self.behavior_tag_init(city, age, people_uuids)
- result.extend(self.calculation_standard_score(datas, city, age, crowd))
- pass
- else:
- print('获取所有case的数据...')
- for city in self.citys:
- for age in self.age:
- if city != '上海市' and age != '85-89年生':
- for crowd_type in self.crowd:
- # print(' {}{}'.format(city, age))
- people_uuids = self.get_people_uuid_by_type(crowd_type)
- if len(people_uuids) > 0:
- print('{}-{}-{}'.format(city, age, crowd_type))
- datas = self.behavior_tag_init(city, age, people_uuids)
- result.extend(self.calculation_standard_score(datas, city, age, crowd_type))
- return result
- def behavior_tag_init(self, city, age, people_uuids):
- result = {}
- self.group_type_count = self.marketing_db.select(self.sql_5, [city, city, age, people_uuids])
- for key in self.tag_data:
- values = self.tag_data[key]
- elements = []
- for value in values:
- question = value[0].split('-')[0]
- option = value[0].split('-')[1]
- corr = value[1]
- fz, fm = self.molecular_value(question, option, city, age, people_uuids)
- if fm == 0:
- c = 0
- else:
- c = fz / fm
- elements.append([question, option, corr, fz, fm, c])
- result[key] = elements
- return self.indicator_calculation_d_e(result)
- def molecular_value(self, queston, option, city, age, people_uuids):
- # 获取当前父选项包含的子选项id和子题id列表
- result = self.shangju_db.select(self.sql_6, [option, queston])
- sub_option_ids = []
- group_types = []
- for rt in result:
- sub_option_id, sub_question_id, content = rt[0], rt[1], rt[2]
- grouptypes = self.shangju_db.select(self.sql_7, [sub_question_id])
- for g_t in grouptypes:
- if g_t[0] not in group_types:
- group_types.append(g_t[0])
- sub_option_ids.append(sub_option_id)
- # 计算子选项在答题记录中的点击数
- sub_options_count = 0
- if len(sub_option_ids) > 0:
- result_1 = self.marketing_db.select(self.sql_8, [sub_option_ids, city, city, age, people_uuids])
- sub_options_count = result_1[0][0]
- # 计算父选项包含的子选项对应的子题所在的测试gt包含的点击数。
- denominator_value = 0
- for info in self.group_type_count:
- if info[0] in group_types:
- denominator_value += info[1]
- return sub_options_count, denominator_value
- def indicator_calculation_d_e(self, data):
- result = {}
- for key in data.keys():
- values = data[key]
- c_list = [x[5] for x in values]
- fm_list = [x[4] for x in values]
- sum_c = sum(fm_list)
- min_c = min(c_list)
- elements = []
- for value in values:
- _value = []
- c = value[5]
- if sum_c == 0:
- d = 0
- else:
- d = c / sum_c
- e = c - min_c
- _value.extend(value)
- _value.append(d)
- _value.append(e)
- elements.append(_value)
- result[key] = elements
- return result
- def calculation_standard_score(self, datas, city, age, crowd_type):
- scores = []
- for key in datas.keys():
- print(key)
- print(' 父题序号 父选项序号 相关系系数 分子值 分母值 百分比 人数权重 偏离值')
- values = [x[5] for x in datas[key]]
- min_c = min(values)
- f = min_c
- for value in datas[key]:
- print(' {}'.format(value))
- if value[2] is not None and value[7] is not None:
- f += float(value[2] * value[7])
- print(' 标准分:{}'.format(f))
- scores.append([city, age, key, crowd_type, f])
- # self.shangju_db.add_some(self.sql_9, scores)
- return scores
- def get_crowd_people(self):
- result = {}
- for type in self.crowd:
- uuids = self.get_people_uuid_by_type(type)
- result[type] = len(uuids)
- return result
- def get_people_uuid_by_type(self, type):
- # 获取每个答题者所答题的子选项id
- uuids = []
- type_sub_option_ids = self.crowd_contain_sub_option_ids[type]
- for people in self.people_sub_option_ids:
- uuid = people[0]
- sub_option_ids = str(people[1]).split(',')
- # list(set(a).intersection(set(b)))
- if len(list(set(sub_option_ids).intersection(set(type_sub_option_ids)))) > 0:
- uuids.append(uuid)
- return uuids
- def get_crowd_contain_sub_option_ids(self):
- """
- 获取ABCDEF人群包含的子选项id
- :return:
- """
- infos = {}
- for key in self.crowd_info.keys():
- values = self.crowd_info[key]
- sub_option_ids = []
- for value in values:
- if value is not None:
- vals = str(value).split('-')
- option, question = vals[1], vals[0]
- query_result = self.shangju_db.select(self.sql_6, [option, question])
- for qr in query_result:
- sub_option_id, sub_question_id, content = qr[0], qr[1], qr[2]
- sub_option_ids.append(sub_option_id)
- infos[key] = sub_option_ids
- return infos
- if __name__ == '__main__':
- mvp = Mvp()
- mvp.write_tag()
|