123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687 |
- from mysql_db import MysqlDB
- from excel_util import ExcelUtil
- import time
- from entity import PeopleInfo
- class Mvp:
- """
- ce mvp 答题数据统计
- 城市特例 北京市,上海市, 重庆市,天津市
- """
- age_dict = {
- '00-04年生': '00后',
- '05-09年生': '05后',
- '50-59年生': '50后',
- '60-69年生': '60后',
- '70-74年生': '70后',
- '75-79年生': '75后',
- '80-84年生': '80后',
- '85-89年生': '85后',
- '90-94年生': '90后',
- '95-99年生': '95后'
- }
- tag_table = {
- '用户画像-审美偏好': ['mvp_crowd_info_aesthetic_preference', 'aesthetic_preference'],
- '用户画像-行为兴趣': ['mvp_crowd_info_behavior', 'behavioral_interest'],
- '用户画像-观念': ['mvp_crowd_info_consumer_concept', ''],
- '用户画像-消费特征': ['mvp_crowd_info_consumer_structure', ''],
- '空间需求图谱-功能关联': ['mvp_crowd_info_functional_module', ''],
- '性别比例': ['mvp_crowd_info_gender_rate', ''],
- '用户画像-生活方式': ['mvp_crowd_info_life_style', ''],
- '人群占比': ['mvp_crowd_info_rate', ''],
- '用户画像-社交模式': ['mvp_crowd_info_social_mode', ''],
- '用户画像-行业': ['mvp_crowd_info_trade', ''],
- '用户画像-出行方式': ['mvp_crowd_info_trip_mode', ''],
- '空间需求图谱-基础模块分值': ['mvp_innovate_space_base_module', ''],
- '空间需求图谱-色相': ['mvp_innovate_space_color_prefer', 'color'],
- '空间需求图谱-精装关注点': ['mvp_innovate_space_hardcover_focus', 'hardcover_focus'],
- '空间需求图谱-色调': ['mvp_innovate_space_hue_prefer', 'hue'],
- '空间需求图谱-单品偏好': ['mvp_innovate_space_item_preference', 'item_preference'],
- '空间需求图谱-材质': ['mvp_innovate_space_material_prefer', 'material'],
- '空间需求图谱-空间特性偏好': ['mvp_innovate_space_space_prefer', 'space_preference'],
- '空间需求图谱-空间拓普图': ['mvp_innovate_space_space_top', ''],
- '模块分数': ['mvp_crowd_info_module', 'module_name']
- }
- crowd_info_1 = {
- '1973': 'A',
- '1974': 'B',
- '1975': 'C',
- '1976': 'D',
- '1977': 'E',
- '1978': 'F',
- '1979': 'G',
- }
- base_insert_sql = 'insert into {}(crowd_info_id, {}, standard_value, status) values(%s, %s, %s, '\
- '1) '
- def get_table_name(self, name):
- """
- 获取表名
- :param name:
- :return:
- """
- params = self.tag_table.get(name)
- if params:
- return self.tag_table.get(name)[0]
- def get_insert_sql(self, tag_type_name):
- """
- 根据标签分类名称获取相应表的插入sql
- :param tag_type_name:
- :return:
- """
- params = self.tag_table.get(tag_type_name)
- if params:
- return self.base_insert_sql.format(params[0], [1])
- crowd = ['A', 'B', 'C', 'D', 'E', 'F']
- # 获取答题记录中城市列表
- sql_1 = 'select city from f_t_daren_score_2 group by city'
- # 获取父选项和父题id
- sql_2 = 'select a.id, a.content, b.id, b.name from bq_option a left join bq_question b on a.question_id = b.id ' \
- 'where a.serial_number = %s and b.serial_number = %s and a.status = b.status = 1 '
- # 获取答题人的年龄段集合
- sql_4 = 'select nld from f_t_daren_score_2 group by nld'
- # 根据城市,年龄段,人群分类统计答题记录数
- sql_5 = 'select testcase_id, COUNT(uuid) from f_t_daren_score_2 where uuid in %s group by testcase_id '
- # 根据父选项获取子选项id列表
- sql_6 = 'SELECT c.id, c.sub_question_id, c.content FROM bq_sub_option c WHERE c.father_id in (SELECT a.id FROM ' \
- 'bq_option a ' \
- 'LEFT JOIN bq_question b ON a.question_id = b.id WHERE a.serial_number = %s AND b.serial_number = %s ' \
- 'and a.status = 1 and b.status = 1) and c.status = 1 '
- # 根据子题id获取包含子题id的测试
- sql_7 = 'select id from bq_testcase where status = 1 and FIND_IN_SET(%s, question_ids)'
- # 根据子选项id统计答题数
- sql_8 = 'SELECT count(1) FROM f_t_daren_score_2 a LEFT JOIN d_shangju_tiku_02 b ON a.sub_question_id = ' \
- 'b.sub_question_id AND (a.score = b.score or a.score = b.sub_option_id) and a.testcase_id = ' \
- 'b.testcase_id WHERE b.sub_option_id in %s and a.uuid in %s '
- # 获取一个uuid下答题的子选项id列表
- sql_10 = 'select DISTINCT uuid, GROUP_CONCAT(DISTINCT b.sub_option_id) from f_t_daren_score_2 a left join ' \
- 'd_shangju_tiku_02 b on a.sub_question_id = b.sub_question_id and (a.score = b.score or a.score = ' \
- 'b.sub_option_id) where a.status = ' \
- 'b.status = 1 group by uuid '
- # 向表mvp_crowd_info插入数据
- sql_11 = 'insert into mvp_crowd_info(age_area, city_name, crowd_type, status) values(%s, %s, %s, 1)'
- # 向表mvp_crowd_info_behavior中插入数据
- sql_12 = 'insert into mvp_crowd_info_behavior(crowd_info_id, behavioral_interest, standard_value, status) values(' \
- '%s, %s, ' \
- '%s, 1) '
- # 向表mvp_crowd_info_module中插入数据
- sql_13 = 'insert into mvp_crowd_info_module(crowd_info_id, module_name, standard_value, status) values (%s, %s, ' \
- '%s, 1) '
- sql_14 = 'select a.id, a.age_area, a.city_name, a.crowd_type from mvp_crowd_info a where a.status = 1'
- # 获取答题城市信息from city
- sql_15 = '''
- SELECT
- a.uuid,
- IFNULL(GROUP_CONCAT(DISTINCT a.city, a.province), 00) AS city,
- IFNULL(GROUP_CONCAT(DISTINCT a.nld), 00) AS nld,
- IFNULL(GROUP_CONCAT(DISTINCT a.sex), 00) AS sex,
- IFNULL(GROUP_CONCAT(DISTINCT b.sub_option_id), 00) as sub_option_ids,
- IFNULL(GROUP_CONCAT(DISTINCT a.testcase_id), 00) as testcase_ids
- FROM
- f_t_daren_score_2 a
- LEFT JOIN d_shangju_tiku_02 b ON a.testcase_id = b.testcase_id
- WHERE
- a.testcase_id = b.testcase_id
- AND a.sub_question_id = b.sub_question_id
- AND (
- a.score = b.score
- OR a.score = b.sub_option_id
- )
- GROUP BY
- a.uuid
- '''
- # 根据用户uuid获取城市信息
- sql_16 = 'SELECT a.uuid, b.sub_option_content FROM f_t_daren_score_2 a LEFT JOIN d_shangju_tiku_02 b ON ' \
- 'a.testcase_id = b.testcase_id WHERE a.sub_question_id = b.sub_question_id AND (a.score = b.score OR ' \
- 'a.score = b.sub_option_id) AND a.uuid = %s AND a.sub_question_id = 303 and a.status = b.status = 1 '
- # 答题人人群分类信息
- sql_17 = 'SELECT a.uuid, b.sub_option_id FROM f_t_daren_score_2 a LEFT JOIN d_shangju_tiku_02 b ON a.testcase_id ' \
- '= b.testcase_id WHERE a.sub_question_id = b.sub_question_id AND (a.score = b.score OR a.score = ' \
- 'b.sub_option_id) AND a.uuid = %s AND a.sub_question_id = 286 and a.status = b.status = 1 '
- def __init__(self, path=None):
- self.shangju_db = MysqlDB('shangju')
- self.marketing_db = MysqlDB('bi_report')
- # self.shangju_db.truncate('mvp_standard_score')
- self.tag_data = ExcelUtil(file_name=path).init_mvp_data()
- self.crowd_info = ExcelUtil(file_name=path, sheet_name='选项-人群分类对应表').init_crowd_info()
- self.citys = self.init_city()
- self.age = self.init_age()
- self.people_sub_option_ids = self.marketing_db.select(self.sql_10)
- self.crowd_contain_sub_option_ids = self.get_crowd_contain_sub_option_ids()
- self.module_scores = ExcelUtil(file_name='set-behavior-tag.xlsx', sheet_name='算法关系表').init_module_info()
- # self.scores_tag = ExcelUtil(file_name='行为与模块分值汇总.xlsx', sheet_name='行为').init_scores()
- # self.score_module = ExcelUtil(file_name='行为与模块分值汇总.xlsx', sheet_name='模块').init_scores()
- self.scores_tag = None
- self.score_module = None
- def close(self):
- self.shangju_db.close()
- self.marketing_db.close()
- def init_city(self):
- """
- 获取答题数据中的城市。
- :return:
- """
- citys = ['宁波市', '上海市', '苏州市', '无锡市', '宁波市']
- # citys_info = self.marketing_db.select(self.sql_1)
- # citys.extend([x[0] for x in citys_info if x[0] is not None])
- return citys
- def query_behavioral_info(self, city=None, age=None, crowd=None):
- """
- 查询行为兴趣信息
- :return:
- """
- # datas = []
- # for key in self.tag_data.keys():
- # values = self.tag_data[key]
- # for value in values:
- # question = value[0].split('-')[0]
- # option = value[0].split('-')[1]
- # corr = value[1]
- # data = self.shangju_db.select(self.sql_2, [option, question])
- # if len(data) > 0:
- # print([question, option, data[0][3], data[0][1], key, corr])
- # datas.append([question, option, data[0][3], data[0][1], key, corr])
- # self.shangju_db.truncate('mvp_question_classification')
- # self.shangju_db.add_some(self.sql_3, datas)
- scores_behavioral = self.city_age_crowd(city, age, crowd)
- # scores_module = self.module_score(crowd, city, age, scores_behavioral['score'])
- # result = {'行为兴趣分值': scores_behavioral['score'], '模块分值': scores_module}
- print('update finished!!!')
- return scores_behavioral
- def people_info(self):
- """
- 答题人个人信息获取
- :return:
- """
- people_info_city = self.marketing_db.select(self.sql_15)
- people_infos = []
- for people in people_info_city:
- uuid = people[0]
- city = people[1]
- nld = people[2]
- sex = people[3]
- sub_option_ids_1 = people[4]
- testcaseid = people[5]
- if str(city).find('市') != -1:
- city = str(city).split('市')[0] + '市'
- if str(nld).find(',') != -1:
- nld_1 = list(str(nld).split(','))
- if len(nld_1) > 0:
- nld = nld_1[0]
- else:
- pass
- crowd = []
- testcastids = list(map(int, str(testcaseid).split(',')))
- if len(testcastids) > 0:
- gt_75 = [x for x in testcastids if x in [75, 76, 77, 78]]
- if city is None and len(gt_75) > 0:
- # 从答题结果中获取城市信息
- citys = self.marketing_db.select(self.sql_16, [uuid])
- if len(citys) > 0:
- city = citys[0][1]
- else:
- city = '无城市'
- # 根据用户子选项id集合,获取用户的人群分类
- if len(gt_75) > 0:
- # 特定的测试人群分类从答题结果中获取
- sub_option_ids = self.marketing_db.select(self.sql_17, [uuid])
- for option in sub_option_ids:
- crowd_type = self.crowd_info_1.get(option[1])
- if crowd_type:
- crowd.append(crowd_type)
- else:
- if str(sub_option_ids_1).find(',') != -1:
- crowd.extend(self.get_people_uuid_by_sub_option_ids(sub_option_ids_1))
- if city is None:
- city = '无城市'
- people_info = PeopleInfo(uuid, city, nld, sex, crowd)
- people_infos.append(people_info)
- # people_infos.append([uuid, city, nld, sex, crowd])
- return people_infos
- def people_filter(self, city, nld, crowd):
- uuids = []
- for people in self.people_info_1:
- if people.city == city and people.age == nld and crowd in people.crowd:
- uuids.append(people.uuid)
- return uuids
- def get_people_uuid_by_sub_option_ids(self, sub_ids):
- types = []
- for key in self.crowd_contain_sub_option_ids.keys():
- type_sub_option_ids = self.crowd_contain_sub_option_ids[key]
- sub_option_ids = list(map(int, str(sub_ids).split(',')))
- # list(set(a).intersection(set(b)))
- if len(list(set(sub_option_ids).intersection(set(type_sub_option_ids)))) > 0 and key not in types:
- types.append(key)
- return types
- def update_data(self):
- """
- 定时更新分值
- :return:
- """
- citys = ['上海市', '杭州市', '苏州市', '无锡市', '宁波市']
- for city in citys:
- result = self.city_age_crowd(city)
- self.insert_score_to_db(result)
- print('{}数据更新完成...'.format(citys))
- print('{}数据关系完成...'.format(time.time()))
- def insert_score_to_db(self, scores):
- """
- 行为、模块分数写入数据库
- :return:
- """
- ids = self.query_data()
- behavior_score = scores['behavior_score']
- module_score = scores['module_score']
- module_insert_sql = self.get_insert_sql('模块分数')
- if module_insert_sql:
- module_insert_data = []
- for module in module_score:
- city_2 = module[0]
- age_2 = module[1]
- crowd_2 = module[2]
- module_name_2 = module[3]
- module_score_2 = module[4]
- for id in ids:
- city_1 = id[2]
- age_1 = id[1]
- crowd_1 = id[3]
- id_1 = id[0]
- if city_2 == city_1 and self.age_dict[age_2] == age_1 and crowd_2 == crowd_1:
- module_insert_data.append([id_1, module_name_2, module_score_2])
- # 先清空之前的数据
- table_name = self.get_table_name('模块分数')
- if table_name:
- self.shangju_db.truncate(table_name)
- self.shangju_db.add_some(module_insert_sql, module_insert_data)
- print('模块分数更新完成...')
- for b_score in behavior_score:
- for key in b_score.keys():
- insert_sql = self.get_insert_sql(key)
- if insert_sql:
- insert_data = []
- score = b_score[key]
- for data in score:
- city = data[0]
- age = data[1]
- tag_name = data[2]
- crowd = data[3]
- tag_score = data[4]
- for id in ids:
- city_1 = id[2]
- age_1 = id[1]
- crowd_1 = id[3]
- id_1 = id[0]
- if city == city_1 and self.age_dict[age] == age_1 and crowd == crowd_1:
- insert_data.append([id_1, tag_name, tag_score])
- if len(insert_data) > 0:
- table_name = self.get_table_name(key)
- if table_name:
- self.shangju_db.truncate(table_name)
- self.shangju_db.add_some(insert_sql, insert_data)
- else:
- print('未找到对应的表,数据无法插入...')
- print('行为分数更新完成...')
- def module_score(self, crowd, city, age, scores):
- """
- 模块分数计算
- 城市 年龄 人群分类 模块名称 分数
- :return:
- """
- import json
- print(json.dumps(scores, ensure_ascii=False))
- modules = self.module_scores[crowd]
- result = []
- for key in modules.keys():
- values = modules[key]
- module_name = key
- score = 0
- for value in values:
- behavioral_name = value[0]
- weight = float(value[2])
- standard_score = [x[4] for x in scores if x[2] == behavioral_name]
- if len(standard_score) > 0:
- score += standard_score[0] * weight
- result.append([city, age, crowd, module_name, score])
- return result
- # def insert_data(self, scores_behavioral, scores_module):
- def insert(self):
- """
- 计算数据写入数据库中,供接口查看
- :return:
- """
- infos = []
- for city in ['上海市', '宁波市', '苏州市', '杭州市', ' 无锡市']:
- for age in ['50-59年生', '60-69年生', '70-74年生', '75-79年生', '80-84年生', '85-89年生', '90-94年生', '95-99年生', '00'
- '-04年生',
- '05-09年生', '10-14年生', '15-19年生']:
- for c_type in ['A', 'B', 'C', 'D', 'E', 'F']:
- age_area = self.age_dict.get(age)
- if age_area:
- infos.append([age_area, city, c_type])
- self.shangju_db.add_some(self.sql_11, infos)
- def query_data(self):
- ids = self.shangju_db.select(self.sql_14)
- return ids
- def shanghai_85_module_score_insert(self):
- """
- 上海市,85后模块分数计算
- :return:
- """
- result = []
- for crowd in self.crowd:
- modules = self.module_scores[crowd]
- for key in modules.keys():
- values = modules[key]
- module_name = key
- score = 0
- for value in values:
- behavioral_name = value[0]
- weight = float(value[2])
- # standard_score = [x[4] for x in scores if x[2] == behavioral_name]
- standard_score = float(value[1])
- if standard_score is not None:
- score += standard_score * weight
- result.append(['上海市', '85后', crowd, module_name, score])
- return {'score': result, 'data': self.module_scores}
- def tag_module_score_insert(self):
- """
- 标签模块分数写入数据库
- :return:
- """
- ids = self.query_data()
- insert_data = []
- insert_data_1 = []
- for tag, module in zip(self.scores_tag, self.score_module):
- city = tag[0]
- age = tag[1]
- crowd = tag[2]
- tag_name = tag[3]
- tag_score = tag[4]
- city_2 = module[0]
- age_2 = module[1]
- crowd_2 = module[2]
- module_name_2 = module[3]
- module_score_2 = module[4]
- for id in ids:
- city_1 = id[2]
- age_1 = id[1]
- crowd_1 = id[3]
- id_1 = id[0]
- if city == city_1 and self.age_dict[age] == age_1 and crowd == crowd_1:
- insert_data.append([id_1, tag_name, tag_score])
- if city_2 == city_1 and self.age_dict[age_2] == age_1 and crowd_2 == crowd_1:
- insert_data_1.append([id_1, module_name_2, module_score_2])
- self.shangju_db.add_some(self.sql_12, insert_data)
- self.shangju_db.add_some(self.sql_13, insert_data_1)
- def init_age(self):
- """
- 获取答题数据中的年龄
- """
- age_info = self.marketing_db.select(self.sql_4)
- # print([x[0] for x in age_info])
- return [x[0] for x in age_info if x[0] is not None]
- def city_age_crowd(self, city=None, age=None, crowd=None):
- data_start = []
- result = []
- module_scores = []
- self.people_info_1 = self.people_info()
- if city is not None and age is not None and crowd is not None:
- print('获取指定城市,年龄段,人群类型的数据...')
- # people_uuids = self.get_people_uuid_by_type(crowd)
- people_uuids = self.people_filter(city, age, crowd)
- behavior_data = None
- if len(people_uuids) > 0:
- print('{}-{}-{}'.format(city, age, crowd))
- datas = self.behavior_tag_init(city, age, people_uuids)
- data_start.append(datas)
- all_data, behavior_data_1 = self.calculation_standard_score(datas, city, age, crowd)
- result.append(all_data)
- behavior_data = behavior_data_1
- if behavior_data:
- module_scores.extend(self.module_score(crowd, city, age, behavior_data))
- else:
- print('获取所有case的数据...')
- # for city in self.citys:
- # for city in [city]:
- for age in self.age:
- for crowd_type in self.crowd:
- if age == '85-89年生' and city == '上海市':
- print('上海市85后数据导入人工值,无需计算...')
- pass
- else:
- # print(' {}{}'.format(city, age))
- # people_uuids = self.get_people_uuid_by_type(crowd_type)
- people_uuids = self.people_filter(city, age, crowd)
- behavior_data = None
- if len(people_uuids) > 0:
- print('{}-{}-{}'.format(city, age, crowd_type))
- datas = self.behavior_tag_init(city, age, people_uuids)
- data_start.append(datas)
- all_data, behavior_data_1 = self.calculation_standard_score(datas, city, age, crowd_type)
- result.append(all_data)
- behavior_data = behavior_data_1
- if behavior_data:
- module_scores.extend(self.module_score(crowd_type, city, age, behavior_data))
- # data_list = []
- # for e in data_start:
- # for key in e.keys():
- # values = e[key]
- # for sub_e in values:
- # ele = [key]
- # ele.extend(sub_e)
- # data_list.append(ele)
- # pass
- return {'behavior_score': result, 'module_score': module_scores}
- # return {'score': result, 'data': data_list}
- def behavior_tag_init(self, city, age, people_uuids):
- result = {}
- self.group_type_count = self.marketing_db.select(self.sql_5, [people_uuids])
- # 表名
- for key in self.tag_data:
- values = self.tag_data[key]
- result_sub = {}
- # 标签
- for key_tag_name in values.keys():
- questions = values[key_tag_name]
- elements = []
- for value in questions:
- question = value[0].split('-')[0]
- option = value[0].split('-')[1]
- corr = value[1]
- fz, fm = self.molecular_value(question, option, city, age, people_uuids)
- if fm == 0:
- c = 0
- else:
- c = fz / fm
- elements.append([question, option, corr, fz, fm, c])
- result_sub[key_tag_name] = elements
- result[key] = self.indicator_calculation_d_e(result_sub)
- return result
- def molecular_value(self, queston, option, city, age, people_uuids):
- # 获取当前父选项包含的子选项id和子题id列表
- result = self.shangju_db.select(self.sql_6, [option, queston])
- sub_option_ids = []
- group_types = []
- for rt in result:
- sub_option_id, sub_question_id, content = rt[0], rt[1], rt[2]
- grouptypes = self.shangju_db.select(self.sql_7, [sub_question_id])
- for g_t in grouptypes:
- if str(g_t[0]) not in group_types:
- group_types.append(str(g_t[0]))
- sub_option_ids.append(sub_option_id)
- # 计算子选项在答题记录中的点击数
- sub_options_count = 0
- if len(sub_option_ids) > 0:
- result_1 = self.marketing_db.select(self.sql_8, [sub_option_ids, people_uuids])
- sub_options_count = result_1[0][0]
- # 计算父选项包含的子选项对应的子题所在的测试gt包含的点击数。
- denominator_value = 0
- for info in self.group_type_count:
- if str(info[0]) in group_types:
- denominator_value += info[1]
- return sub_options_count, denominator_value
- def indicator_calculation_d_e(self, data):
- result = {}
- for key in data.keys():
- values = data[key]
- c_list = []
- for x in values:
- _x = x[5]
- if _x is not None and x != 0:
- c_list.append(_x)
- fm_list = [x[4] for x in values]
- sum_c = sum(fm_list)
- if len(c_list) == 0:
- min_c = 0
- else:
- min_c = min(c_list)
- elements = []
- for value in values:
- _value = []
- c = value[5]
- if sum_c == 0:
- d = 0
- else:
- d = c / sum_c
- e = c - min_c
- _value.extend(value)
- _value.append(d)
- _value.append(e)
- elements.append(_value)
- result[key] = elements
- return result
- def calculation_standard_score(self, datas, city, age, crowd_type):
- scores = {}
- for key_tag_type in datas.keys():
- print(key_tag_type)
- tag_type_data = datas[key_tag_type]
- scores_sub = []
- for key_tag in tag_type_data.keys():
- key_tag_data = tag_type_data[key_tag]
- print(key_tag)
- print(' 父题序号 父选项序号 相关系系数 分子值 分母值 百分比 人数权重 偏离值')
- values = [x[5] for x in key_tag_data]
- min_c = min(values)
- f = min_c
- for value in key_tag_data:
- print(' {}'.format(value))
- if value[2] is not None and value[7] is not None:
- f += float(value[2] * value[7])
- print(' 标准分:{}'.format(f))
- scores_sub.append([city, age, key_tag, crowd_type, f])
- scores[key_tag_type] = scores_sub
- # self.shangju_db.add_some(self.sql_9, scores)
- return scores, scores['用户画像-行为兴趣']
- def people_data(self):
- result = self.people_info()
- a = 0
- b = 0
- c = 0
- d = 0
- e = 0
- f = 0
- for rt in result:
- crowds = rt.crowd
- if 'A' in crowds:
- a += 1
- if 'B' in crowds:
- b += 1
- if 'C' in crowds:
- c += 1
- if 'D' in crowds:
- d += 1
- if 'E' in crowds:
- e += 1
- if 'F' in crowds:
- f += 1
- return {'A': a, 'B': b, 'C': b, 'D': d, 'E': e, 'F': f}
- def get_crowd_people(self):
- result = {}
- for type in self.crowd:
- uuids = self.get_people_uuid_by_type(type)
- result[type] = len(uuids)
- return result
- def get_people_uuid_by_type(self, type):
- uuids = []
- type_sub_option_ids = self.crowd_contain_sub_option_ids[type]
- for people in self.people_sub_option_ids:
- uuid = people[0]
- sub_option_ids = list(map(int, str(people[1]).split(',')))
- # list(set(a).intersection(set(b)))
- if len(list(set(sub_option_ids).intersection(set(type_sub_option_ids)))) > 0 and uuid not in uuids:
- uuids.append(uuid)
- return uuids
- def get_crowd_contain_sub_option_ids(self):
- """
- 获取ABCDEF人群包含的子选项id
- :return:
- """
- infos = {}
- for key in self.crowd_info.keys():
- values = self.crowd_info[key]
- sub_option_ids = []
- for value in values:
- if value is not None:
- vals = str(value).split('-')
- option, question = vals[1], vals[0]
- query_result = self.shangju_db.select(self.sql_6, [option, question])
- for qr in query_result:
- sub_option_id, sub_question_id, content = qr[0], qr[1], qr[2]
- sub_option_ids.append(int(sub_option_id))
- infos[key] = sub_option_ids
- return infos
- if __name__ == '__main__':
- mvp = Mvp()
- mvp.people_info()
|