|
@@ -372,8 +372,8 @@ class Mvp:
|
|
|
城市 年龄 人群分类 模块名称 分数
|
|
|
:return:
|
|
|
"""
|
|
|
- import json
|
|
|
- print(json.dumps(scores, ensure_ascii=False))
|
|
|
+ # import json
|
|
|
+ # print(json.dumps(scores, ensure_ascii=False))
|
|
|
modules = self.module_scores[crowd]
|
|
|
result = []
|
|
|
for key in modules.keys():
|
|
@@ -496,25 +496,25 @@ class Mvp:
|
|
|
print('获取所有case的数据...')
|
|
|
# for city in self.citys:
|
|
|
for cy in self.city_list:
|
|
|
- for age in self.age_list:
|
|
|
+ for age_1 in self.age_list:
|
|
|
for crowd_type in self.crowd:
|
|
|
- if age == '85-89年生' and cy == '上海市':
|
|
|
+ if age_1 == '85-89年生' and cy == '上海市':
|
|
|
print('上海市85后数据导入人工值,无需计算...')
|
|
|
pass
|
|
|
else:
|
|
|
# print(' {}{}'.format(city, age))
|
|
|
# people_uuids = self.get_people_uuid_by_type(crowd_type)
|
|
|
- people_uuids = self.people_filter(cy, age, crowd)
|
|
|
+ people_uuids = self.people_filter(cy, age_1, crowd)
|
|
|
behavior_data = None
|
|
|
if len(people_uuids) > 0:
|
|
|
- print('{}-{}-{}'.format(cy, age, crowd_type))
|
|
|
- datas = self.behavior_tag_init(cy, age, people_uuids)
|
|
|
+ print('{}-{}-{}'.format(cy, age_1, crowd_type))
|
|
|
+ datas = self.behavior_tag_init(cy, age_1, people_uuids)
|
|
|
data_start.append(datas)
|
|
|
- all_data, behavior_data_1 = self.calculation_standard_score(datas, cy, age, crowd_type)
|
|
|
+ all_data, behavior_data_1 = self.calculation_standard_score(datas, cy, age_1, crowd_type)
|
|
|
result.append(all_data)
|
|
|
behavior_data = behavior_data_1
|
|
|
if behavior_data:
|
|
|
- module_scores.extend(self.module_score(crowd_type, cy, age, behavior_data))
|
|
|
+ module_scores.extend(self.module_score(crowd_type, cy, age_1, behavior_data))
|
|
|
# data_list = []
|
|
|
# for e in data_start:
|
|
|
# for key in e.keys():
|