|
@@ -0,0 +1,71 @@
|
|
|
+from mysql_db import MysqlDB
|
|
|
+import pandas as pd
|
|
|
+from email_util import EmailUtil
|
|
|
+
|
|
|
+
|
|
|
+class PandaUtil(object):
|
|
|
+ def __init__(self, db_name):
|
|
|
+ self.con = MysqlDB(db_name, db_type=1).con
|
|
|
+ pass
|
|
|
+
|
|
|
+ def query_data(self, sql):
|
|
|
+ df = pd.read_sql_query(sql, self.con)
|
|
|
+ return df
|
|
|
+
|
|
|
+ def panda_chart(self, df_list, cols, title_x, title_y, file_name):
|
|
|
+ """
|
|
|
+ data of narray
|
|
|
+ index of data_frame: [0,1,2,3]
|
|
|
+ cols numbers of static columns
|
|
|
+ """
|
|
|
+
|
|
|
+ writer = pd.ExcelWriter(file_name, engine='xlsxwriter')
|
|
|
+ for i, df in enumerate(df_list):
|
|
|
+ # df = pd.DataFrame(data, index=None, columns=["姓名", "饱和度", "人力"])
|
|
|
+ sheet_name = f'Sheet{i}'
|
|
|
+ df.to_excel(writer, sheet_name=sheet_name, index=False)
|
|
|
+ workbook = writer.book
|
|
|
+ worksheet = writer.sheets[sheet_name]
|
|
|
+ chart = workbook.add_chart({'type': 'column'})
|
|
|
+ # set colors for the chart each type .
|
|
|
+ colors = ['#E41A1C', '#377EB8', '#4DAF4A', '#984EA3', '#FF7F00', '#7CFC00', ' #76EEC6', '#7EC0EE', '#00F5FF']
|
|
|
+ # Configure the series of the chart from the dataframe data.
|
|
|
+ for col_num in range(1, cols + 1):
|
|
|
+ chart.add_series({
|
|
|
+ 'name': [f'{sheet_name}', 0, col_num],
|
|
|
+ 'categories': [f'{sheet_name}', 1, 0, 4, 0], # axis_x start row ,start col,end row ,end col
|
|
|
+ 'values': [f'{sheet_name}', 1, col_num, 4, col_num], # axis_y value of
|
|
|
+ 'fill': {'color': colors[col_num - 1]}, # each type color choose
|
|
|
+ 'overlap': -10,
|
|
|
+ })
|
|
|
+
|
|
|
+ # Configure the chart axes.
|
|
|
+ chart.set_x_axis({'name': f'{title_x}'})
|
|
|
+ chart.set_y_axis({'name': f'{title_y}', 'major_gridlines': {'visible': False}})
|
|
|
+ chart.set_size({'width': 900, 'height': 400})
|
|
|
+ # Insert the chart into the worksheet.
|
|
|
+ worksheet.insert_chart('H2', chart)
|
|
|
+ writer.save()
|
|
|
+ writer.save()
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == '__main__':
|
|
|
+ # pdu = PandaUtil('linshi')
|
|
|
+ # sql = 'select house_id, COUNT(house_id) as number from t_house_image group by house_id limit 5'
|
|
|
+ # df_data = pdu.query_data(sql)
|
|
|
+ # print(df_data.size)
|
|
|
+ # pdu.panda_chart([df_data], 1, 'title x', 'title y', 'pandas_chart_columns2.xlsx')
|
|
|
+ # send_email = EmailUtil()
|
|
|
+ # send_email.send_mail(mail_excel='pandas_chart_columns2.xlsx')
|
|
|
+ import pandas as pd
|
|
|
+ import numpy as np
|
|
|
+
|
|
|
+ df = pd.DataFrame({'ID': [1, 2, 3, None, 5, 6, 7, 8, 9, 10],
|
|
|
+ 'Name': ['Tim', 'Victor', 'Nick', None, 45, 48, '哈哈', '嗯呢', 'ess', 'dss'],
|
|
|
+ 'address': ['美国', '试试', '单独', None, '刚刚', '信息', '报表', '公司', '是否', '是否'],
|
|
|
+ 'address': ['美国', '试试', '单独', None, '刚刚', '信息', '报表', '公司', '是否', '是否'],
|
|
|
+ 'address': ['美国', '试试', '单独', None, '刚刚', '信息', '报表', '公司', '是否', '是否']
|
|
|
+ }
|
|
|
+ )
|
|
|
+ df.set_index("ID")
|
|
|
+ df.to_excel('output.xlsx')
|