|
@@ -132,7 +132,8 @@ class Mvp:
|
|
|
城市 年龄 人群分类 模块名称 分数
|
|
|
:return:
|
|
|
"""
|
|
|
- behavioral_score = scores['用户画像-行为兴趣']
|
|
|
+ import json
|
|
|
+ print(json.dumps(scores, ensure_ascii=False))
|
|
|
modules = self.module_scores[crowd]
|
|
|
result = []
|
|
|
for key in modules.keys():
|
|
@@ -142,7 +143,7 @@ class Mvp:
|
|
|
for value in values:
|
|
|
behavioral_name = value[0]
|
|
|
weight = float(value[2])
|
|
|
- standard_score = [x[4] for x in behavioral_score if x[2] == behavioral_name]
|
|
|
+ standard_score = [x[4] for x in scores if x[2] == behavioral_name]
|
|
|
if len(standard_score) > 0:
|
|
|
score += standard_score[0] * weight
|
|
|
result.append([city, age, crowd, module_name, score])
|
|
@@ -239,12 +240,16 @@ class Mvp:
|
|
|
if city is not None and age is not None and crowd is not None:
|
|
|
print('获取指定城市,年龄段,人群类型的数据...')
|
|
|
people_uuids = self.get_people_uuid_by_type(crowd)
|
|
|
+ behavior_data = None
|
|
|
if len(people_uuids) > 0:
|
|
|
print('{}-{}-{}'.format(city, age, crowd))
|
|
|
datas = self.behavior_tag_init(city, age, people_uuids)
|
|
|
data_start.append(datas)
|
|
|
- result.extend(self.calculation_standard_score(datas, city, age, crowd))
|
|
|
- module_scores.extend(self.module_score(crowd, city, age, result))
|
|
|
+ all_data, behavior_data_1 = self.calculation_standard_score(datas, city, age, crowd)
|
|
|
+ result.append(all_data)
|
|
|
+ behavior_data = behavior_data_1
|
|
|
+ if behavior_data:
|
|
|
+ module_scores.extend(self.module_score(crowd, city, age, behavior_data))
|
|
|
pass
|
|
|
else:
|
|
|
print('获取所有case的数据...')
|
|
@@ -258,12 +263,16 @@ class Mvp:
|
|
|
else:
|
|
|
# print(' {}{}'.format(city, age))
|
|
|
people_uuids = self.get_people_uuid_by_type(crowd_type)
|
|
|
+ behavior_data = None
|
|
|
if len(people_uuids) > 0:
|
|
|
print('{}-{}-{}'.format(city, age, crowd_type))
|
|
|
datas = self.behavior_tag_init(city, age, people_uuids)
|
|
|
data_start.append(datas)
|
|
|
- result.extend(self.calculation_standard_score(datas, city, age, crowd_type))
|
|
|
- module_scores.extend(self.module_score(crowd_type, city, age, result))
|
|
|
+ all_data, behavior_data_1 = self.calculation_standard_score(datas, city, age, crowd)
|
|
|
+ result.append(all_data)
|
|
|
+ behavior_data = behavior_data_1
|
|
|
+ if behavior_data:
|
|
|
+ module_scores.extend(self.module_score(crowd_type, city, age, behavior_data))
|
|
|
# return result
|
|
|
# data_list = []
|
|
|
# for e in data_start:
|
|
@@ -360,6 +369,7 @@ class Mvp:
|
|
|
def calculation_standard_score(self, datas, city, age, crowd_type):
|
|
|
scores = {}
|
|
|
for key_tag_type in datas.keys():
|
|
|
+ print(key_tag_type)
|
|
|
tag_type_data = datas[key_tag_type]
|
|
|
scores_sub = []
|
|
|
for key_tag in tag_type_data.keys():
|
|
@@ -377,7 +387,7 @@ class Mvp:
|
|
|
scores_sub.append([city, age, key_tag, crowd_type, f])
|
|
|
scores[key_tag_type] = scores_sub
|
|
|
# self.shangju_db.add_some(self.sql_9, scores)
|
|
|
- return scores
|
|
|
+ return scores, scores['用户画像-行为兴趣']
|
|
|
|
|
|
def get_crowd_people(self):
|
|
|
result = {}
|